Blog de Enunlugardelcosmos

paradojas

La paradoja de la muerte de calor

Escrito por Enunlugarenelcosmos 17-03-2018 en ciencia. Comentarios (0)

La paradoja de la muerte de calor , también conocida como la paradoja de Clausius, es una reducción al absurdo argumento que utiliza la termodinámica para mostrar la imposibilidad de un universo infinitamente viejo. Fue Formulada en 1862 por Lord Kelvin , Hermann von Helmholtz y William John Macquorn Rankine.

Asumiendo que el universo es eterno, surge una pregunta ¿Cómo es que el equilibrio termodinámico no se ha logrado todavía?

La paradoja se basaba en el rígido punto de vista mecánico del Segundo principio de la termodinámica postulado por Rudolf Clausius según el cual el calor solo puede transferirse de un objeto más frío a uno más frío. Si el universo fuera eterno, como se afirma en el modelo estacionario clásico del universo, ya debería estar frío.

Cualquier objeto caliente transfiere calor a su entorno más frío, hasta que todo esté a la misma temperatura . Para dos objetos a la misma temperatura, tanto calor fluye de un cuerpo como flujos del otro, y el efecto neto no cambia. Si el universo fuera infinitamente viejo, debe haber habido suficiente tiempo para que las estrellas enfríen y calienten su entorno. En todas partes, por lo tanto, debería estar a la misma temperatura y no debería haber estrellas, o todo debería estar tan caliente como las estrellas.

Como hay estrellas y el universo no está en equilibrio térmico, no puede ser infinitamente viejo. En la cosmología del Big Bang, la edad actual del universo no es lo suficientemente antigua como para haber alcanzado el equilibrio, mientras que en un sistema de estado estable, el hidrógeno suficiente se repone o se regenera de forma continua para permitir una densidad promedio constante y evitar que las estrellas se agoten.

Crédito: https://arxiv.org/abs/0912.1756
https://arxiv.org/abs/0812.1679

No hay texto alternativo automático disponible.


Paradoja suicidio cuántico

Escrito por Enunlugarenelcosmos 04-11-2017 en ciencia. Comentarios (0)

Se denomina suicidio cuántico a un experimento imaginario desarrollado por Max Tegmark en 1998.

Un experimento de pensamiento es un experimento que tiene lugar sólo en la mente. El nivel cuántico es el nivel más pequeño de materia que hemos detectado hasta ahora en el universo. La materia a este nivel es infinitesimal, y es prácticamente imposible que los científicos la investiguen de una manera práctica usando métodos tradicionales de investigación científica.

El experimento trata de distinguir entre la interpretación de Copenhague y la teoría de los universos múltiples de Hugh Everett a través de una variación del experimento del gato de Schrödinger, consistente en mirar este último desde el punto de vista del gato.

El experimento supone un hombre sentado con un arma que apunta hacia su cabeza. El arma es manipulada por una máquina que mide la rotación de una partícula subatómica. Cada vez que el hombre apriete el gatillo el arma se disparará dependiendo del sentido de la rotación de la partícula: Si gira en sentido horario el arma dispara, en sentido contrario no lo hace.

Según la interpretación de Copenhague, con cada ejecución del experimento existe un 50 % de probabilidad de que el arma sea disparada y el hombre muera. La teoría de los universos múltiples plantea, que cada ejecución del experimento divide el universo en dos: uno en que el hombre vive y otro mundo en que muere. Después de muchas series de la prueba, habrá muchos universos. En todos ellos menos en uno el hombre dejará de existir, pero siempre habrá un universo donde siga existiendo. Desde el punto de vista del hombre, por mucho que apriete el gatillo del arma nunca se disparará, toda vez que su conciencia seguirá existiendo en uno de los universos. Esto último es lo que se denomina inmortalidad cuántica.

Crédito: Wikipedia, howstuffworks science.

La imagen puede contener: texto

No hay texto alternativo automático disponible.


Paradoja suicidio cuántico

Escrito por Enunlugarenelcosmos 04-11-2017 en ciencia. Comentarios (0)

Se denomina suicidio cuántico a un experimento imaginario desarrollado por Max Tegmark en 1998.

Un experimento de pensamiento es un experimento que tiene lugar sólo en la mente. El nivel cuántico es el nivel más pequeño de materia que hemos detectado hasta ahora en el universo. La materia a este nivel es infinitesimal, y es prácticamente imposible que los científicos la investiguen de una manera práctica usando métodos tradicionales de investigación científica.

El experimento trata de distinguir entre la interpretación de Copenhague y la teoría de los universos múltiples de Hugh Everett a través de una variación del experimento del gato de Schrödinger, consistente en mirar este último desde el punto de vista del gato.

El experimento supone un hombre sentado con un arma que apunta hacia su cabeza. El arma es manipulada por una máquina que mide la rotación de una partícula subatómica. Cada vez que el hombre apriete el gatillo el arma se disparará dependiendo del sentido de la rotación de la partícula: Si gira en sentido horario el arma dispara, en sentido contrario no lo hace.

Según la interpretación de Copenhague, con cada ejecución del experimento existe un 50 % de probabilidad de que el arma sea disparada y el hombre muera. La teoría de los universos múltiples plantea, que cada ejecución del experimento divide el universo en dos: uno en que el hombre vive y otro mundo en que muere. Después de muchas series de la prueba, habrá muchos universos. En todos ellos menos en uno el hombre dejará de existir, pero siempre habrá un universo donde siga existiendo. Desde el punto de vista del hombre, por mucho que apriete el gatillo del arma nunca se disparará, toda vez que su conciencia seguirá existiendo en uno de los universos. Esto último es lo que se denomina inmortalidad cuántica.

Crédito: Wikipedia, howstuffworks science.

La imagen puede contener: texto

No hay texto alternativo automático disponible.


La paradoja de Einstein-Podolsky-Rosen, denominada «Paradoja EPR»

Escrito por Enunlugarenelcosmos 26-10-2016 en ciencia. Comentarios (0)

La paradoja de Einstein-Podolsky-Rosen, denominada «Paradoja EPR», consiste en un experimento mental propuesto por Albert Einstein, Boris Podolsky y Nathan Rosen en 1935.1 Es relevante históricamente, puesto que pone de manifiesto un problema aparente de la mecánica cuántica, y en las décadas siguientes se dedicaron múltiples esfuerzos a desarrollarla y resolverla.

A Albert Einstein, y a muchos otros científicos, la idea del entrelazamiento cuántico les resultaba extremadamente perturbadora, ya que violaban el principio de localidad. Esta particular característica de la mecánica cuántica permite preparar estados de dos o más partículas en los cuales es imposible obtener información útil sobre el estado total del sistema haciendo sólo mediciones sobre una de las partículas. Por otro lado, en un estado entrelazado, manipulando una de las partículas, se puede modificar el estado total. Es decir, operando sobre una de las partículas se puede modificar el estado de la otra a distancia de manera instantánea. Esto habla de una correlación entre las dos partículas que no tiene contrapartida en el mundo de nuestras experiencias cotidianas.

El experimento planteado por EPR consiste en dos partículas que interactuaron en el pasado y que quedan en un estado entrelazado. Dos observadores reciben cada una de las partículas. Si un observador mide la inercia de una de ellas, sabe cuál es la inercia de la otra. Si mide la posición, gracias al entrelazamiento cuántico y al principio de incertidumbre, puede saber la posición de la otra partícula de forma instantánea, lo que contradice el sentido común.

La paradoja EPR está en contradicción con la teoría de la relatividad, ya que aparentemente se transmite información de forma instantánea entre las dos partículas. De acuerdo a EPR, esta teoría predice un fenómeno (el de la acción a distancia instantánea) pero no permite hacer predicciones deterministas sobre él; por lo tanto, la mecánica cuántica es una teoría incompleta.

Esta paradoja (aunque, en realidad, es más una crítica que una paradoja), critica dos conceptos cruciales: la no localidad de la mecánica cuántica (es decir, la posibilidad de acción a distancia) y el problema de la medición. En la física clásica, medir un sistema, es poner de manifiesto propiedades que se encontraban presentes en el mismo, es decir, que es una operación determinista. En mecánica cuántica, constituye un error asumir esto último. El sistema va a cambiar de forma incontrolable durante el proceso de medición, y solamente podemos calcular las probabilidades de obtener un resultado u otro.

Hasta el año 1964, este debate perteneció al dominio de la filosofía de la ciencia. En ese momento, John Bell propuso una forma matemática para poder verificar la paradoja EPR. Bell logró deducir unas desigualdades asumiendo que el proceso de medición en mecánica cuántica obedece a leyes deterministas, y asumiendo también localidad, es decir, teniendo en cuenta las críticas de EPR. Si Einstein tenía razón, las desigualdades de Bell son ciertas y la teoría cuántica es incompleta. Si la teoría cuántica es completa, estas desigualdades serán violadas.

Desde 1976 en adelante, se han llevado a cabo numerosos experimentos y absolutamente todos ellos han arrojado como resultado una violación de las desigualdades de Bell. Esto implica un triunfo para la teoría cuántica, que hasta ahora ha demostrado un grado altísimo de precisión en la descripción del mundo subatómico, incluso a pesar de sus consabidas predicciones reñidas con el sentido común y la experiencia cotidiana.

En la actualidad, se han realizado numerosos experimentos basados en esta paradoja y popularizados en ocasiones bajo el nombre de teletransporte cuántico. Este nombre llama a engaño, ya que el efecto producido no es un teletransporte de partículas al estilo de la ciencia ficción sino la transmisión de información del estado cuántico entre partículas entrelazadas. La comprensión de esta paradoja ha permitido profundizar en la interpretación de algunos de los aspectos menos intuitivos de la mecánica cuántica. Esta área continúa en desarrollo con la planificación y ejecución de nuevos experimentos.

Foto de En un lugar del cosmos.

Foto de En un lugar del cosmos.


La paradoja de la dualidad onda-corpúsculo

Escrito por Enunlugarenelcosmos 10-10-2016 en ciencia. Comentarios (0)

La paradoja de la dualidad onda-corpúsculo es resuelta en el marco teórico de la mecánica cuántica. Dicho marco es complejo y contraintuitivo, ya que nuestra intuición del mundo físico está basada en los cuerpos macroscópicos que son ampliamente consistentes con la mecánica newtoniana y solo muy marginalmente exhiben efectos cuánticos. Algunos de los efectos cuánticos incompatibles con la mecánica newtoniana son:

1.Los sistemas físicos pueden evolucionar de manera no determinista, esto se produce cuando se realiza una medida filtrante sobre el sistema de acuerdo con el Postulado IV de la mecánica cuántica.

2.Exclusividad de las medidas, resulta imposible determinar con precisión infinita y simultánea ciertas magnitudes físicas por consiguiente no es posible construir un análogo clásico del estado de una partícula, esto es consecuencia del principio de incertidumbre de Heisenberg.

3.Los experimentos no realizados no tienen resultados, esto choca con la suposición objetivista de que los atributos físicos de las partículas existen aunque nadie los observe directamente. Esto es consecuencia del teorema de Kochen-Specker.

4. las partículas cuánticas exhiben características duales, según el tipo de experimento muestran un comportamiento típico de las partículas materiales cuasipuntales de la mecánica clásica o bien un comportamiento típico de ondas que se propagan en un medio.

Cada partícula en la naturaleza, sea fotón, electrón, átomo o lo que sea, puede describirse en términos de la solución de una ecuación diferencial, típicamente de la ecuación de Schrödinger (en el caso no relativista, o la ecuación de Dirac en el caso relativista). Estas soluciones son funciones matemáticas llamadas funciones de onda. Las funciones de onda continen información sobre el comportamiento cuántico de las partículas que se pueden difractar e interferir unas con otras e incluso consigo mismas, además de otros fenómenos ondulatorios predecibles descritos en el experimento de la doble rendija.

Las funciones de onda admiten una interpretación en términos de probabilidades de encontrar la correspondiente partícula en un punto dado del espacio en un momento dado. Por ejemplo, en un experimento que contenga una partícula en movimiento, uno puede buscar que la partícula llegue a una localización en particular en un momento dado usando un aparato de detección que apunte a ese lugar. Mientras que el comportamiento cuántico sigue unas funciones determinísticas bien definidas (como las funciones de onda), la solución a tales ecuaciones son probabilísticas. La probabilidad de que el detector encuentre la partícula es calculada usando la integral del producto de la función de onda y su complejo conjugado. Mientras que la función de onda puede pensarse como una propagación de la partícula en el espacio, en la práctica el detector verá o no verá la partícula entera en cuestión, nunca podrá ver una porción de la misma, como dos tercios de un electrón. He aquí la extraña dualidad: La partícula se propaga en el espacio de manera ondulatoria y probabilística pero llega al detector como un corpúsculo completo y localizado. Esta paradoja conceptual tiene explicaciones en forma de la interpretación de Copenhague, el formulación de integrales de caminos o la teoría universos múltiples. Es importante puntualizar que todas estas interpretaciones son equivalentes y resultan en la misma predicción, pese a que ofrecen unas interpretaciones filosóficas muy diferentes.

Mientras la mecánica cuántica hace predicciones precisas sobre el resultado de dichos experimentos, sus implicaciones filosóficas aún se discuten ampliamente. Dicho debate ha evolucionado como una ampliación del esfuerzo por comprender la dualidad onda-corpúsculo. ¿Qué significa para un protón comportarse como onda y como partícula? ¿Cómo puede ser un antielectrón (positrón) matemáticamente equivalente a un electrón moviéndose hacia atrás en el tiempo bajo determinadas circunstancias, y qué implicaciones tiene esto para nuestra experiencia unidireccional del tiempo? ¿Cómo puede una partícula teletransportarse a través de una barrera mientras que un balón de fútbol no puede atravesar un muro de cemento? Las implicaciones de estas facetas de la mecánica cuántica aún siguen desconcertando a muchos de los que se interesan por ella.

Algunos físicos íntimamente relacionados con el esfuerzo por alcanzar las reglas de la mecánica cuántica han visto este debate filosófico sobre la dualidad onda-corpúsculo como los intentos de sobreponer la experiencia humana en el mundo cuántico. Dado que, por naturaleza, este mundo es completamente no intuitivo, la teoría cuántica debe ser aprendida bajo sus propios términos independientes de la experiencia basada en la intuición del mundo macroscópico. El mérito científico de buscar tan profundamente por un significado a la mecánica cuántica es, para ellos, sospechoso. El teorema de Bell y los experimentos que inspira son un buen ejemplo de la búsqueda de los fundamentos de la mecánica cuántica. Desde el punto de vista de un físico, la incapacidad de la nueva filosofía cuántica de satisfacer un criterio comprobable o la imposibilidad de encontrar un fallo en la predictibilidad de las teorías actuales la reduce a una posición nula, incluso al riesgo de degenerar en una pseudociencia.

Foto de En un lugar del cosmos.

Foto de En un lugar del cosmos.