Blog de Enunlugardelcosmos

Blog dedicado a la cosmología

En este blog encontrarás artículos y noticias relacionadas con el cosmos y con la ciencia.

Geología de Mercurio.

Escrito por Enunlugarenelcosmos 30-05-2016 en ciencia. Comentarios (0)

Geología de Mercurio.
La geología de Mercurio es la menos conocida de los planetas interiores del Sistema Solar. Las razones para esto incluyen tanto la cercanía de Mercurio al Sol y sus consecuentes peligros para sondas, como el hecho de que la duración del ciclo día-noche (movimiento de rotación) en Mercurio es de 58 días terrestres. Esto último hizo que la sonda que lo visitara tres veces, el Mariner 10 de la NASA durante 1974 y 1975, solamente pudiera observar el lado iluminado por el Sol en cada visita.
Tras completar su primer día solar en septiembre de 2011, más del 99% de la superficie de Mercurio ha sido cartografiado por la sonda MESSENGER, (lanzada en agosto del 2004), tanto con imágenes en color como monocromas, con un nivel de detalle tal que el entendimiento de la geología de Mercurio por parte de los científicos ha eclipsado el nivel logrado con los datos recogidos por la Mariner 10.
Después de que Mercurio se formase hace más de 4 mil millones de años recibió un acentuado bombardeo de cometas y asteroides que finalizó hace 3.800 millones de años. Durante este período de intensa craterización, la superficie registró muchos impactos. Algunos de estos, como el que formó la Cuenca de Caloris fueron rellenados por el material magmático del planeta, formándose planicies suaves como las presentes en la Luna. Una vez que el planeta se enfrió y se contrajo, se produjeron grietas por su superficie que se superponen a otras estructuras como cráteres y las suaves planicies; un claro indicio que las grietas son más recientes. El período de vulcanismo en Mercurio terminó cuando la compresión del manto se ajustó lo suficiente como para evitar la salida de la lava a la superficie. Probablemente esto pasó en un período que se ubica entre los primeros 700 u 800 millones de años de su historia.
Desde entonces sólo han sucedido impactos de cometas y asteroides aislados.
El 60% de la superficie de Mercurio está compuesta por cráteres de impacto distribuidos uniformemente por la misma. El hecho de que la superficie presente una abundante cantidad de cráteres se debe a que Mercurio tiene una atmósfera muy tenue, lo cual permite la entrada de los meteoroides sin ser desintegrados. Mercurio ha ido acumulando impactos desde su creación hace más de 4000 millones de años. Por esta razón, tanto su superficie como la de la Luna y Marte atestiguan un registro de impactos que son importantes para la determinación de la duración de este período de craterización, que fue muy intenso hasta 3000 millones de años atrás.
Además de cráteres de diámetros que van desde cientos de metros hasta cientos de kilómetros y que parecen ser el doble de profundos que los lunares, existen otros de tamaño descomunales, como es el caso del cráter Caloris, con un diámetro de 1.550 km, es la mayor estructura en la superficie de Mercurio. Este impacto fue tan violento que produjo la salida de lava del manto y creó un anillo concéntrico alrededor del cráter con alturas que llegan los 2 km. Las consecuencias de Caloris son también impresionantes: a este se le atribuyen las fracturas y escarpes en el lado opuesto del planeta. Caloris contiene también una formación de origen desconocido no antes vista ni en el propio Mercurio ni en la Luna y que consiste en aproximadamente un centenar de grietas estrechas y de suelo liso conocida cómo "La Araña", en cuyo centro existe un cráter, desconociéndose si dicho cráter está relacionado con su formación ó no. Interesantemente, también el albedo de la Cuenca Caloris es superior al de los terrenos circundantes -al revés de lo que ocurre en la Luna-. La razón de ello está siendo investigada. Posteriormente dicha cuenca se llenó de lava y se hundió en su centro, provocando las grietas también visibles en el interior de dicha la cuenca.
Este tipo de cráteres, los cuales fueron rellenados por el material magmático, en la geología lunar se los conoce como "mares".
Como en la Luna, los cráteres de Mercurio presentan las características típicas de un impacto: el material deyectado (o eyectado) que forma depósitos alrededor del cráter, a veces en forma de prolongaciones lineales que se las conoce como radios (o rayos) y cuya luminosidad es más intensa por ser terreno relativamente más joven que la superficie circundante.
Se han observado otros escarpes que atraviesan la superficie del planeta tanto en las zonas lisas como en las craterizadas. Su presencia se atribuye al enfriamiento que experimentó Mercurio desde su formación por lo que se fue encogiendo y esto provocó el reacomodamiento de la corteza.
La sonda MESSENGER también ha descubierto la presencia de posibles volcanes en éste planeta.
La alta densidad del planeta (5,44 g/cm³) hace suponer la existencia de un núcleo compuesto por 65% de hierro cuyo tamaño probablemente represente cerca del 75% del diámetro del planeta. El núcleo está rodeado por un manto de 600 km de espesor. Al reducirse el núcleo y el manto como consecuencia del enfriamiento después de su formación, el radio del planeta se redujo entre 2 y 4 kilómetros ocasionando el sistema de fracturas que se ven en su superficie.
Imágenes: 1.magen de la superficie de Mercurio en falso color obtenida por la Mariner 10. Los colores ponen en evidencia regiones de composición diferente, particularmente las planicies lisas nacidas de cuencas de lava (arriba a la izquierda, en naranja). 2. Cuenca de Caloris.

Foto de En un lugar del cosmos.

Foto de En un lugar del cosmos.

Foto de En un lugar del cosmos.


Mercurio,estructura interna.

Escrito por Enunlugarenelcosmos 30-05-2016 en ciencia. Comentarios (0)

Mercurio,estructura interna.
Mercurio es uno de los cuatro planetas rocosos o sólidos; es decir, tiene un cuerpo rocoso como la Tierra. Este planeta es el más pequeño de los cuatro, con un diámetro de 4879 km en el ecuador. Mercurio está formado aproximadamente por un 70 % de elementos metálicos y un 30 % de silicatos. La densidad de este planeta es la segunda más grande de todo el sistema solar, siendo su valor de 5430 kg/m³, solo un poco menor que la densidad de la Tierra. La densidad de Mercurio se puede usar para deducir los detalles de su estructura interna. Mientras la alta densidad de la Tierra se explica considerablemente por la compresión gravitacional, particularmente en el núcleo, Mercurio es mucho más pequeño y sus regiones interiores no están tan comprimidas. Por tanto, para explicar esta alta densidad, el núcleo debe ocupar gran parte del planeta y además ser rico en hierro, material con una alta densidad. Los geólogos estiman que el núcleo de Mercurio ocupa un 42 % de su volumen total (el núcleo de la Tierra apenas ocupa un 17 %). Este núcleo estaría parcialmente fundido, lo que explicaría el campo magnético del planeta.
Rodeando el núcleo existe un manto de unos 600 km de grosor. La creencia generalizada entre los expertos es que en los principios de Mercurio un cuerpo de varios kilómetros de diámetro (un planetesimal) impactó contra él deshaciendo la mayor parte del manto original, dando como resultado un manto relativamente delgado comparado con el gran núcleo.
La corteza mercuriana mide en torno a los 100-200 km de espesor. Un hecho distintivo de la corteza de Mercurio son las visibles y numerosas líneas escarpadas o escarpes que se extienden varios miles de kilómetros a lo largo del planeta. Presumiblemente se formaron cuando el núcleo y el manto se enfriaron y contrajeron al tiempo que la corteza se estaba solidificando.

Foto de En un lugar del cosmos.

Foto de En un lugar del cosmos.

Foto de En un lugar del cosmos.


Mercurio

Escrito por Enunlugarenelcosmos 30-05-2016 en ciencia. Comentarios (0)

Mercurio es el planeta del Sistema Solar más próximo al Sol y el más pequeño. Forma parte de los denominados planetas interiores o terrestres y carece de satélites al igual que Venus. Se conocía muy poco sobre su superficie hasta que fue enviada la sonda planetaria Mariner 10 y se hicieron observaciones con radar y radiotelescopios.
Antiguamente se pensaba que Mercurio siempre presentaba la misma cara al Sol, situación similar al caso de la Luna con la Tierra; es decir, que su periodo de rotación era igual a su periodo de traslación, ambos de 88 días. Sin embargo, en 1965 se mandaron impulsos de radar hacia Mercurio, con lo cual quedó definitivamente demostrado que su periodo de rotación era de 58,7 días, lo cual es 2/3 de su periodo de traslación. Esto no es coincidencia, y es una situación denominada resonancia orbital.
Al ser un planeta cuya órbita es inferior a la de la Tierra, Mercurio periódicamente pasa delante del Sol, fenómeno que se denomina tránsito astronómico. Observaciones de su órbita a través de muchos años demostraron que el perihelio gira 43" de arco más por siglo de lo predicho por la mecánica clásica de Newton. Esta discrepancia llevó a un astrónomo francés, Urbain Le Verrier, a pensar que existía un planeta aún más cerca del Sol, al cual llamaron Vulcano, que perturbaba la órbita de Mercurio. Ahora se sabe que Vulcano no existe; la explicación correcta del comportamiento del perihelio de Mercurio se encuentra en la Teoría General de la Relatividad.

Foto de En un lugar del cosmos.


El monte Olimpo

Escrito por Enunlugarenelcosmos 27-05-2016 en ciencia. Comentarios (0)

El monte Olimpo (en latín Olympus Mons, designación oficial de la Unión Astronómica Internacional) es el mayor volcán conocido en el sistema solar. Se encuentra en el hemisferio occidental del planeta Marte, en las coordenadas aproximadas de 18º N, 133º W.
El monte Olimpo es el más joven de los grandes volcanes de Marte, pues se formó durante el llamado periodo amazónico. Su naturaleza de montaña era conocida antes de que las sondas espaciales visitaran el planeta gracias a su albedo, siendo conocido por los astrónomos como Nix Olympica.
A pesar de su descomunal tamaño, el monte Olimpo no era suficientemente grande como para ser visto e interpretado correctamente por los observadores telescópicos anteriores a la era de exploración con naves espaciales. A vista de un telescopio del siglo XIX, el Olimpo parecía poco más que una gran mancha oscura en la superficie del planeta. Sin embargo, sí se detectó algo extraño en ese lugar del planeta rojo.
A veces, los observadores veían ahí una mancha blanca, que destacaba sobremanera en medio del terreno anaranjado-rojizo de Marte. Por esta razón, el astrónomo italiano Giovanni Schiaparelli le puso el nombre de Nix Olympica (Nieves del Olimpo), nombre que resultó ser una gran premonición, pues se tomó el nombre del monte Olimpo en Grecia, la morada de los Dioses olímpicos cuya cima estaba habitualmente cubierta de nieve. Sin embargo, esto no significa que Schiaparelli necesariamente interpretara Nix Olympica como una montaña.
Durante décadas, Nix Olympica siguió viéndose como una mancha brillante y variable. En 1951, el observador aficionado japonés Tsuneo Saheki divisó un destello brillante en el lugar, que en cuestión de media hora se iluminó hasta rivalizar con el casquete de hielo polar y que después se desvaneció al cabo de otra media hora. Los astrónomos discutían sobre el significado de aquellas observaciones, creyéndose que podrían ser reflejos del hielo, erupciones volcánicas e incluso señales enviadas por una presunta civilización marciana.
La mancha brillante llamada Nix Olympica resultó deberse a las nubes que suelen formarse sobre el Olympus Mons. Es un fenómeno atmosférico que también existe en la Tierra, y que es llamado «nubes orográficas», es decir, nubes masivas de corta duración.
Ya en épocas de la exploración espacial, en 1971, la nave Mariner 9 orbitó alrededor de Marte durante una tormenta de polvo global. Los primeros objetos en ser visibles tras ir retirándose el polvo en suspensión fueron precisamente las cimas superiores de los volcanes de Tharsis, demostrado que la altitud de estos era, en gran medida, superior a la de cualquier montaña terrestre. Las observaciones que la Mariner 9 realizó sobre la superficie de Marte confirmaron que Nix Olympica no era solo una montaña, sino un volcán. Fue a partir de aquí cuando los científicos empezaron a conocer al volcán como Olympus Mons.
El macizo central se eleva aproximadamente entre 22-23 kilómetros sobre la llanura circundante, lo que equivale a tres veces la altura del monte Everest, y a 21 287 m sobre el nivel medio de la superficie marciana, debido a que se encuentra en una depresión de 2 km de profundidad. Está flanqueado por grandes acantilados de hasta 6 km de altura, y su caldera tiene 85 km de largo, 60 km de ancho y entre 2,4 y 2,8 km de profundidad, pudiéndose apreciar hasta seis chimeneas superpuestas de cronología sucesiva.
La base del volcán mide 600 km de diámetro incluyendo el borde exterior de los acantilados, lo cual le otorga una superficie en su base de 283 000 km² aproximadamente, comparable con la superficie de Ecuador. Sus dimensiones son tales que una persona que estuviese en la superficie marciana no sería capaz de ver la silueta del volcán, ni siquiera desde una distancia a la cual la curvatura del planeta empezara a ocultarla. El efecto por tanto sería el de estar contemplando una «pared», o bien confundir la misma con la línea del horizonte. La única forma de ver la montaña adecuadamente es desde el espacio. Igualmente, si alguien se encontrara en la cima del volcán y mirase hacia abajo no podría ver el final, ya que la pendiente llegaría hasta el horizonte.
Es un error pensar que la cima del monte Olimpo está por encima de la atmósfera marciana. La presión atmosférica en su cumbre es un 2 % de la que hay en la superficie; comparándolo con el Everest, su presión atmosférica es un 25 % que la que hay a nivel del mar. Es más, el polvo marciano se puede encontrar incluso a esa altitud, así como la capa de nubes de dióxido de carbono. Aunque la presión atmosférica media de Marte es un 1 % de la que hay en la Tierra, el hecho de que la gravedad sea mucho más débil permite que su atmósfera se extienda a una altitud mucho mayor.
Olympus Mons sería un lugar poco probable para el aterrizaje de las sondas espaciales automáticas en un futuro próximo, debido a que el volcán se encuentra en una de las regiones de Marte donde más abunda el polvo en suspensión; de hecho, una capa de polvo fino cubre siempre gran parte del terreno, ocultando el suelo rocoso (las muestras de roca podrían ser muy difíciles de conseguir). También es probable que la capa de polvo pudiera causar graves problemas de maniobrabilidad en los vehículos de exploración.
El monte Olimpo es un volcán en escudo en forma de caldera, formado como resultado de flujos de lava muy poco viscosa durante largos períodos de tiempo, y es mucho más ancho que alto; la pendiente media del monte es muy suave. En 2004, la sonda Mars Express detectó que los flujos de lava en las pendientes del monte parecían tener solo dos millones de años, fecha muy reciente en términos geológicos, sugiriendo que la montaña aún podría tener una ligera actividad volcánica.
Las islas Hawái son un ejemplo de volcanes muy similares a menor escala, como por ejemplo el Mauna Loa. El extraordinario tamaño del volcán se debe probablemente al hecho de que Marte no tiene placas tectónicas. Por eso, el cráter permaneció fijo sobre un punto caliente de gran actividad y continuó vertiendo lava, dando al volcán unas dimensiones tan espectaculares.
El monte Olimpo se encuentra en la meseta de Tharsis, un terreno elevado en la superficie marciana que contiene otras formaciones volcánicas. Entre ellas hay una cadena de volcanes en forma de caldera más pequeños, como es el caso de los montes Arsia, Pavonis y Ascraeus, los cuales son pequeños en comparación con el Olimpo. La región que rodea inmediatamente al monte Olimpo es una depresión de 2 km de profundidad.
El volcán está rodeado por una región conocida como la aureola, con enormes gargantas y montañas que se extienden a 1000 km de la cima, y que muestran la evidencia de una antigua actividad glacial.

Foto de En un lugar del cosmos.

Foto de En un lugar del cosmos.

Foto de En un lugar del cosmos.


Valles Marineris

Escrito por Enunlugarenelcosmos 27-05-2016 en ciencia. Comentarios (0)

Valles Marineris (del latín Valles Marineris, que significa Valles del Mariner) es el nombre de un gigantesco sistema de cañones que recorre el ecuador del planeta Marte justo al Este de la región de Tharsis. Su nombre es un homenaje a la sonda de la NASA Mariner 9, que descubrió este importante rasgo de la superficie marciana en su vuelo orbital de 1971-1972. Sus dimensiones son de 4500 km de longitud, 200 km de anchura y 11 km de profundidad máxima, llegando a cubrir un cuarto de la circunferencia ecuatorial del planeta. Es, en comparación, diez veces más largo, siete veces más ancho y siete veces más profundo que el Gran Cañón de Arizona, lo cual lo convierte en la hendidura más grande de todas las conocidas en el Sistema Solar.
Han existido varias teorías diferentes sobre el origen de Valles Marineris que han cambiado con el paso del tiempo. Antes de la exploración de la sonda espacial Viking o de los telescopios actuales de gran alcance, la idea de partida era que se trataba de canales (entendidos como obras de ingeniería artificiales), excavados por formas de vida inteligentes para tratar de salvar su desértico y moribundo planeta, si bien el principal obstáculo que encuentra esta idea es que, hasta la fecha, no se han encontrado evidencias de vida en Marte.
Desde 1970 se han señalado otras causas para el origen de esta estructura, gracias a los avances exploratorios logrados mediante el uso de sondas y de telescopios cada vez más sofisticados, y que han permitido abandonar la interpretación de estas estructuras como obras artificiales, evidenciando ser en verdad accidentes geográficos. El origen del sistema de cañones de Valles Marineris ha de buscarse por tanto en causas naturales, siendo las primeras en ser señaladas la acción erosiva del agua líquida o la actividad termokárstica, que consiste en la fusión del permafrost que pudiera existir bajo el suelo marciano, al igual que sucede en las regiones de clima glacial de la Tierra. En Marte la actividad termokárstica sería un fenómeno más probable que la erosión por agua fluyente, cuya presencia actual en el planeta se vería impedida tanto por la baja presión atmosférica existente, que es tan solo un 0,05 % de la terrestre, como por el bajo rango de temperaturas reinantes en la superficie (entre -36 y -125 °C), situado por debajo del punto triple del agua.
Entre otras hipótesis para su origen destacan la propuesta por McCauley en 1972, quien sugería que el cañón se formó por la retirada del magma existente bajo la superficie, o la de Tanaka y Golombek, quienes en 1989 ya apuntaban a una posible fractura por tensiones en la corteza como causa principal. En la actualidad, la teoría más aceptada es la que expone que Valles Marineris es en verdad una falla tectónica, similar a la del Gran Valle del Rift de la Tierra, y posteriormente agrandada por la erosión y los derrumbes sucesivos de los muros de falla. Una prueba de esta erosión, propuesta por Nick Hoffman, quedaría evidenciada por la descompresión del importante acuífero de dióxido de carbono de Noctis Labyrinthus, donde se halla acumulado en estado sólido y que tras pasar a un estado fluido, puede viajar a gran velocidad a través de la delgada atmósfera de Marte.
La interpretación de Valles Marineris como un gran valle de falla permitiría vincular su origen con el del vecino abultamiento de Tharsis, formado desde el Noeico hasta el Hespérico tardío.

Foto de En un lugar del cosmos.